Take home exam Geometry 7-4-2020

Always motivate your answers. You can freely use the results from the lec-
ture notes. Please hand in your solutions in latex, scans of handwritten solutions
will not be accepted. In addition the board of examiners has asked me to have
you print, read, sign and scan the following declaration. Please send the signed
declaration and your solutions to our email address meetkunde20@gmail.com
before the deadline 21-4, 11pm. If some question is unclear or you believe there
might be a typo, do not hesitate to contact us.

Good luck!
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Here are the provisions that are relevant to you sitting the exam:

1. You are required to sign the attached pledge, swearing that your work has
been completed autonomously and using only the tools and aids that the exam-
iner has allowed you to use.

2. Attempts at cheating, fraud or plagiarism will be seen as attempts to take
advantage of the Corona crisis and will be dealt with very harshly by the board
of examiners.

3. The board of examiners grants your examiner the right to conduct a random
sampling. If you are selected for this sample, you may be required to conduct a
discussion (digitally, using audio and video) in which you are asked to explain
and/or rephrase (some of) the answers you submitted for the take-home exam.

(enter your name and student number here)

have completed this exam myself and without help from others unless ex-
pressly allowed by my lecturer. I have come up with these answers myself. I
understand that my fellow students and my lecturers are all doing their best to
do their work as well as possible under the unusual circumstances of the Corona
pandemic, and that any attempt by myself or my fellow students to use these
circumstances to get away with cheating would be undermining those efforts
and the necessary trust that this moment calls for.

Signature:



Total number of points: 90 plus two bonus points for 5i. Final grade is
(10+total points)/10.

1. In this exercise we consider an affine space £ of dimension 2020.

(a) (5 pts) Imagine three distinct parallel affine hyperplanes H, H', H" C

()

& together with two affine lines D7, Dy whose directions are not con-
tained in the direction of H of H. Define the six points P, = HND;,
P! = H ND; and P/ = H' NnD; for i € {1,2}. Prove that
—— —
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If AP, P| = P, P{’ then there must be some @ € & such that AP, Py =

Pg(,j Since Py, Py € D this equality already shows Q € D,. To
finish the proof we argue that also Q € H" because

QP! — QF, + PoP, + PLP!' = —AP,Pi + P3P, + AP, P,

— e T e T
= PP+ N—PyPy+ PP+ PPy + PyP)) € H
Therefore Q = Py

(4 pts) Give an example of an affine map ¢ : £ — £ that has no fixed
points and is not a translation.

For some non-zero vector v € E and O € & we define ¢(O) by
OQS(O; = v. Next choose a linear hyperplane H such that v and H
span E. For any P € & there is a unique a such that O? =av+h
for some h € H. Define ¢(P) by ¢(O)p(P) = av. This is an affine
map with underlying linear map the projection onto span v in the
direction of H. It is not a bijection so also not a translation, because
t,O and O are both sent to ¢(O) for any h € H. It has no fixed point
because a fixed point must be on the line O¢(O) but the restriction
to this affine line is a non-trivial translation.

(4 pts) If Fy, F» are affine subspaces of € of equal dimension, is it true
that there must exist an affine map ¢ : &€ — & such that ¢(Fy) = Fa?
Prove or give a counter example.

Choose O; € F; and define an affine map ¢ : £ — &€ by ¢(O1) = O,.
To complete the definition of ¢, find a linear map f : £ — FE that
sends F to F5 (just augment bases of F; to bases of F). Then define

¢(P) by $(01)¢(P) = f(O1P).

2. In the Euclidean affine plane & consider a circle F' and two distinct points
A,Bon F.

(a)

(4 pts) For a point C on F' consider the centroid G' and orthocenter
H of triangle [A, B,C]. If T is the midpoint of [A, B] and O is the



center of I then use the dilation hg _; /2 to prove C’*P} = 207.

By Theorem 3.3 we have dGﬁ%(H) = 0. Also CH is parallel to
OI because both are perpendicular to AB. Apply Lemma 2.4 with
0, X, XYY = G,H,C,1,0 to see that dG7_%(I) = (C and so

CH = CC + GH = 2G1I + 20C = 201.

(4 pts) Define a function f : F — &£ by setting f(C) to be the ortho-
center of triangle [A, B, C]. Prove that f(F) equals the reflection of
F in the line AB.

Actually f(F) is just the translation of F' by vector 207 by the pre-
vious item. The translation can be factored into two reflections, one
reflection in AB and first a reflection in the line through O perpen-
dicular to OI. The first reflection fixes F' while the second reflects F'
in AB as promised.

(5 pts) Apply Theorem 4.1 from the lecture notes to prove that if
a = d(B,C) is the length of the side opposite A of triangle [A, B, C]
inscribed in F' (whose radius is R) and « is the measure of the geo-
metric angle opposite to a then - = 2R.

noa

sina = d(P,C)/d(O,C) where P is the midpoint of [B, C] since we
know OP is the perpendicular bisector of [B,C] and Theorem 4.1
from the notes says that ZOPC = ZABC. Now d(P,C) = a/2 and
d(0,C) = R so we are done.

3. Suppose E is a three-dimensional Euclidean vector space. By a half-twist
we mean is a linear isometry of F that is a rotation whose oriented angle
is the flat angle.

(a)

(4 pts) Prove that if s; is the reflection in plane J through the origin
then —s; is a half-twist. What is its axis?

Any vector on line J* is fixed by —s since s sends it to its negative.
Next, any j € J is sent to —j since s;(j) = j. This means —s; is a
half-twist with axis J*.

(5 pts) Prove that for any two half-twists h, k there is an element
g € OT(E) such that h =gokog™t.

Suppose a,b are the axes of h and k. In the plane spanned by a,b
there exists a rotation sending b to a. Extending this by the identity
in the orthogonal direction we find a rotation g sending b to a. Now
we claim h = gokog~! because both sides fix all points of a and act
as —1 in the orthogonal direction.



()

(4 pts) Show that any f € OT(E) may be written as a composition
of finitely many half-twists.

By Theorem 3.1 reflections generate OV (FE) and the determinant
makes sure we always need an even number of reflections. By part a)
—sy is a half-twist so inserting an even number of minus signs into
the reflections gives the desired conclusion.

4. We work in affine three-dimensional Euclidean space £.

(a)

(3 pts) Show that the line segments connecting the mid-points of the
six edges of a regular tetrahedron are precisely the edges of a regular
octahedron.

A regular octahedron is formed by the midpoints of the faces of a
cube. Drawing six diagonals in faces of that cube in such a way that
only non-adjacent points on the cube are connected yields a tetra-
hedron. It must be a regular tetrahedron because the symmetries of
the cube that preserve the two maximal sets of non-adjacent points
transfer to the tetrahedron constructed.

(3 pts) Explain how & is the union of countably many regular octahe-
dra and tetrahedra of side length 1 in such a way that the intersection
between any two polyhedra is empty, a single point, a single edge or
a single face.

Cubes with side length 1 fill £ in the desired way. Now decompose
each cube into a regular tetrahedron as above an connect the irregular
pieces in groups of eigth to make an octahedron.

(4 pts) If T' is a regular tetrahedron with side length 1 and centroid
O and T" = ho,—1(T) then describe the convex hull of T N7’ and
also the convex hull of T UT".

We know that the tetrahedra T and 7" are convex and so their in-
tersection is also convex. In fact the intersection is the octahedron
in T from part a). The union contains the vertices of the cube and
the cube contains the union so the convex hull is the cube.

(3 pts) Prove that there exists a sphere S passing through the mid-
points of T" and compute the spherical area of SN T.

The cube from the previous part must have side length side length
g and by the symmetry ho _; the midpoints of the edges of T’
are the midpoints of the faces of the cube. Therefore there exists a
sphere passing through all these points, which is the inscribed sphere
inside the cube. It has radius r = % so the total area of the sphere
is 47?2 = /2. The part of S outside T is formed by four spheri-
cal caps, one on top of each of the four faces of T. Calculus shows
that the area of a spherical cap of height h on a sphere of radius



r is 2rrh. In this case the height h determined by h = r — |Oc¢|
where is the distance from O to the midpoint ¢ of a face of T.
Placing O at the Euclidean origin we see that the coordinates for
c must be ¢ = £(1,1,1) as the face of T" is part of the plane where
x+y+ z=r. It follows that h = » — <= and so the final answer
is m/2 — 8whr = m(1 — 8r%(1 — %)) = 7(—9= — 3) which is about 15
percent of the area of S.

Sha

5. Hyperbolic plane. In this exercise we identify z = x 4+ iy € C with
(z,y) € R? in the standard way. Likewise a complex differentiable func-
tion f : C — C is identified with a differentiable function ¢ : R? — R?
and multiplication by f/(z) provides a linear map from R? to itself that
coincides with the derivative ¢'(x,y). Next, the Euclidean inner product
becomes (v, w) = Re(vw).

(a) (2 pts) For a,b,c,d € R with ad — bec = 1 set f(z) = Zjis Check
that f'(z) = (cz +d)~2 and Imf(2) = Im(2)|cz + d| 2.

(cz+d)a— (az + b)e ad — be

') = (cz+d)? - (cz+d)? = (cz+d)7
by assumption. Also
_f=F 1 (az+b)(cz+d) —(az+b)(cz+d) 1 (ad—be)(z—2) _
tmfz) = 5= = 5( (cz +d)(cz + d) =% Jerap et 2

(b) (2 pts) Identifying the set {z € C : Imz > 0} with the hyperbolic
plane H, show that the map f sends the hyperbolic plane to itself
and that the hyperbolic metric g is written as g(z)(v, w) = %.

By the previous part Imf(z) = Im(2)|cz +d|72 > 0 if z € H so

f sends H to itself. By definition and the identifications with the

complex numbers the hyperbolic metric is written by the formula for

g above.

(c) (2 pts) Prove that the maps f (restricted to H) are isometries in the
sense that g(f(2))(f'(2)u, f'()w) = g(2)(0, w).
fa,b,c,a has inverse fy _p _. o and both are differentiable because they
are rational functions so f is a diffeomorphism. Next,

Re(f (2)0f (2)w) = %((cwd)*%(cz Td) lotlcz 1 d) olcatd) " w)
cz —4
= %(mﬂ + 9w) = |cz + d| " Re(v)

Therefore

Re(f/'(z)vf'(z)w) ez +d| *Re(vw)

G G, () = =g e 2 = e s = 9() )




(d) (2 pts) Show that the straight line Y = {z € H : Rez = 0} is a
geodesic.
The reflection p : H — H defined by p(a+bi) = —a+0bi is an isometry
because it is a Euclidean isometry and it preserves the y-coordinate
of the points in the plane. As such it sends geodesics to geodesics. We
know that for every point p and every vector v there exists a unique
geodesic starting at p with velocity v at p. Consider for any r € R the
geodesic v with v(0) = p = ri and (0)) = v = 4. Since p(7) is also
a geodesic with the same value at 0 and the same derivative at 0 we
must have p(y) = v by uniqueness. Therefore v must be contained
in Y. Again by uniqueness the whole of Y is part of a single geodesic.

Alternatively one may compute the Christoffel symbols to find (using
real coordinates z = (z,y)):

1 0 -y !
Fij = < _y—l 0
—1 0 )
rz — (Y Y
17 ( 0 Yy 1

so that the geodesic equations are

V=2v17%/v2 v = (1) — (1))

The line Y is parametrized with unit speed if we set v(t) = (0, ¢€")
and this choice of v does indeed solve the above two equations.

(e) (2 pts) Show that if ¢,d # 0 then f(Y) is a Euclidean semi-circle
with radius 5= and center $(f(0) + f(c0)) where f(o0) = 2.

It since the proposed center is 3(f(0) + f(c0)) = 24t44 it suffices to
prove that for any real ¢ > 0

. bc+ad , 1
t —_ p—
|£(it) 2¢d | 4c2d?
N\ betad _ 2cd(ait+b)—(cit+d)(betad) _ (ad—bc)(cit—d) _ cit—d
Now f(it)— 2J£d = === 20d(cci:5+d) = a2cd(ccitc~zkd) = 2cd(zit+d)
implies
b d it — d|? 1
L et
2cd 42d?|cit + d|?  4c?d?

as required.

(f) (2 pts) Explain why f(Y) is a geodesic.
Isometries send geodesics to geodesics (Lemma 6.5) and it was shown
in the previous parts that Y is a geodesic.

(g) (2 pts) Prove that all non-constant geodesics of H are Euclidean lines
and semi-circles orthogonal to the real-axis.
For any point p and any vector v there is a unique Euclidean line or



semi-circle that is orthogonal to the real axis, passes through p and
is tangent to the affine Euclidean line through p in the direction of
vector v. Soif I have a geodesic passing through p with velocity v then
it must be part of that Euclidean semi-circle or line by uniqueness of
geodesics.

(h) (2 pts) For every m > € > 0 construct a triangle whose angle sum is e.
Angle sum means sum of measures of geometric angles with respect
to the Riemannian metric.

Since gi12 = 0 for any point, the hyperbolic angles are exactly the
Euclidean angles. Consider the Euclidean circles A, B, C' with Eu-
clidean radii ¢,¢,1 + % and Euclidean centers t — 1,—t + 1,0 € C.
For ¢ > 2 the geodesics bound a hyperbolic triangle and the sine of
half the measure of the geometric angle opposite to C' is % which
converges to 0 as t goes to infinity. The other two angles also go to

0 because A, B become tangent to C as t goes to infinity.

(i) (2 pts BONUS) Define B = {z € H: Re(z) € [0,1],z — 3| > 1}. To

emphasize the dependence of f on a, b, c,d we write f as fgp¢,q. De-
fine M = {(a,b,c,d) € Z : ad — bc = 1}. Show that (J,,c s fm(B) =
H and that when m # m’ the intersection f,,,(B) N fy,/ (B) is either
a single geodesic or empty.
(This exercise is a little more difficult and will only be counted as
bonus). It is clear that the images of B under the maps fi5,0,1 in-
tersect in at most a geodesic when b € Z. Let us call these the big
triangles. The big triangles also fill up all of H except for the Eu-
clidean half disks with center % + b and radius % To show that the
whole of H is covered by the f images of B it suffices to prove that
any w inside the unit disk is covered. The map j(z) = fo.1,-1,0(2)
maps the inside of the unit disk to the outside of the unit disk and
vice versa. Notice that Imj(w) > Im(w). This means that either
j(w) is already in the domain covered by the big triangles or we
can translate it horizontally back to the unit circle and apply j once
more. Eventually w will end up in the big region and so everything
is covered by the images of B. The images intersect in at most a
geodesic since any point of intersection can be mapped to a point
inside the big triangle region and there we already know it is true.

6. (7 pts) In the proof of Lemma 6.5 check explicitly that A satisfies the
axioms of an LC-connection as claimed.
We have an isometry f, which is a C? diffecomorphism f : P — @ that
preserves the Riemannian inner products as in g(f(p))(f'(p)v, f'(p)w) =
g(v,w)(p). Throughout we will use the notation p = f(q) and ¢ = f~1(p).
Recall that f'X is a vector field on @ defined by f'X(q) = f'(p)X(p).
The formula makes it clear that if f is C? and X is C? differentiable then
so is f'X. Also recall That dxY is the vector field defined by dxY (p) =

Y'(p)X(p) = >_;(0:;Y)(p)Xi(p) whenever X(p) =3, Xi(p)e.



Given an LC connection V on @ we need to show that AxY = (f 1)’V x f'Y
defines an LC connection on P as well. At least when X, Y are differen-
tiable vector fields then Vp x f'Y is a differentiable vector field on @ and

so AxY defines a differentiable vector field on P.

We start by checking property 2) of LC connections, making use of the fact
that V satisfies the same axiom in . The key point is that f'(uX) = (uo
f~Hf'X for any vector field X and real valued function on P. The proof is

just f'(uX)(q) = f'(P)u(p)X(p) = u(p) f'(P) X (p) = (uof~1)(a)(f' X)(q) =
((uo f~1)f'X)(g). Given vector fields X, Y, Z and function u on P we can
now finish by

AuxiyvZ = () Viuxipy ' Z= (1 ((uof NVpxt' Z+Vypy ' Z) =
(P (o f IV px [ 2)+(f ) Vv ['Z = (wof o f)(f 1) Vyx ['Z+Av Z = ubx Z+Av Z
Next property 1):
Ax(wY+2) = (") Vpx(FuY+f'2) = (f)Vpx(uof D f'Y+f'Z) =
(F) ((uof TV px fY+@px (o f ) 'Y +Vpx(f'2)) = ubxY +Ax Z+(f 1) (95 x (uof 1)) f'Y)
The last term can be simplified to
(F(@px(wo f7))fY) = (Opx(uo f o )Y
and even further by the chain rule using

Opx(uof~)(q) = (uwof ™) f'X(q) = (uof 1) f'(p) X (p) = (uof o f)' () X (p) = u'(p) X (p) = (Oxu)(p)

as required.

Property 4 is easiest to see by writing out X =", Xje; and Y = Zj Yie;.
By the same property for V we find

AxY=Ay X = (fTY) (Vpx f'Y=Vpy ['X) = (f ) (0px 'Y =0py ['X)

so we proceed to investigate the first of the final two terms. If we set
H(s) = f'Y o f(s) = f'(s)Y(s) = >2;(9;f)(s)Y;(s) then the chain rule
says

OpxI'Y(q) = (fY)(@)(f X)) = (fY)(@f ) X(p) = H(p)X(p) =

Y (OH) ) Xi(p) = Y _(8:(0;1)Y) () Xi(p) = Y (9:0;) 0)Y;(0) Xi(p)+(9;.1) (0)(9:Y;) (0) X (p)

Subtracting from this 0y x f'Y (¢) gives
D (0, ))(D:Y5) ()X (0)—(9;.)(p)(0:X;) (p)Ya(p) = ['OxY ()~ f Oy X (q)

]



because f'OxY (q) = f'(p)OxY = f'(p)Y'(p)X (p). Putting it all together
this proves the property after applying (f~1)’.

Finally property 3) we prove in the abbreviated form
(AxY, Z) + (Y, Ax Z) = 0x(Y, Z)

Using the fact that f is an isometry so that (f'Y, f'Z) = (Y, Z) we simplify
the left hand side to

(AxY,Z) + (Y. AxZ) = (fT)'Vpx Y. Z) + (Y, (f ) Vpx ['Z) =

(VpxfY f'Z)+(f'Y.Vpxf'Z)=0px(fY. ['Z)
Finally the isometry property says ('Y, f'Z)(q) = (Y, Z)(p) so

opx(f'Y, f'Z)(q) = (f'Y, f'Z) () f X (q) = (f'Y, f'Z) (¢) f' (») X (p)

= (Y, 2) (0)f'(P)X(p) = 0x (Y, Z)(p)
finishing the proof.

. In this exercise we study Riemannian charts of the form (P, ¢*gg) where
¢ : P — R3 is injective and C? with P C R? some open set such that
Vp € P : the derivative ¢'(p) is injective.

(a) (4 pts) If r : R® — R3 is an affine Euclidean isometry and ¢ = r o ¢
then prove that there is an isometry from (P, ¢*gg) to (P, ¥*gE).
Since all Euclidean isometries of R are the composition of a trans-
lation and a linear isometry, notice that the derivative of r’ of r
is also an Euclidean isometry which is a linear map. The identity
id : P — P is such an isometry since by the chain rule

¢ ge(p)(v,w) = g(¢' (p)v, ¢’ (p)w) = ge(r' o ¢'(p)v,r" 0 ¢'(p)w)

= ge((ro9) (p)v, (rog) (p)w) = ge(¥'(p)v, ¢’ (p)w) = ¥*gr(p)(v,w)

(b) (3 pts) Suppose ¢(x,y) = (z,y, f(x,y)). Compute the scalar curva-
ture of the Riemannian chart (P, ¢*gg) at (0,0) in the case f(z,y) =
22 —y2. Notice that this actually follows from the next part because
f(x,y) = 22 —y? satisfies the conditions 9; f(0,0) = 95 £(0,0) = 0. In
this case the Hessian at (0, 0) is 9101 f(0,0)0202 f(0,0)—0102 £ (0,0)9204 f(0,0) =
—4 so the scalar curvature is —8.

(c) (4 pts) Prove for general C%-functions f : P — R such that 9 f(0,0) =
O2f(0,0) = 0 that the scalar curvature of the Riemannian chart
(P, ¢*gE) at point (0, 0) is 2Hess(f)(0,0). Here the Hessian is Hess(f) =
det(9;0; f) is the determinant of the matrix of second partial deriva-
tives.



We start by computing the Jacobian matrix for

1 0
¢ (u,v) = 0 1
of Oaf

Taking inner products of the columns we find that the matrix for the
Riemannian metric g is

_ (1@ (0u0)(02])
(9i5) = ( (01f)(Baf) 1+(62J2")2 >

and the inverse matrix is using d = 1 + (9,.f)? + (02.f)?

( f1>:1< L+ (02f)  —(0uf)(02]) >
“ ~(0uN@2f) 1+ (Duf)?

Next one finds that the Christoffel symbols Ffj are conveniently ex-
pressed in terms of the two matrices (F}j) and (I‘fj) as:

(TL) = (O f)((1+(92f)* = (91.£)(9:21))

y Hess(f)
2 _
) = BOUE O = QDO g

Recall that the coefficients of the Riemann curvature tensor are

R! Gk = 8ir§k — T + Z F;krfr - ;kl—‘gr

evalutated at (0,0) the final sum of terms drops out since I';(0,0) = 0
for any 14, j, k. Therefore the Ricci curvature at (0,0) is given by

Jk (0,0) ZRM k(0,0) = Zazl“ﬁk(O,O) - ajrgk(oao)
¢

Also notice that in evaluating these derivatives at (0,0) the only
option is to take the derivative of the (O f) part in front of the
formula for Ffj If we derive some other part of the formula this first
derivative will yield 0. More specifically we find

85Ffj (0,0) = Hess,x(f)(0,0)Hess;;(f)(0,0)

It follows that Rj; = detHess(f)(0,0) if j = k and 0 otherwise.
The scalar curvature is computed from the Ricci curvature by the
formula S = Z o 1R” and since g;. is the identity matrix we
obtain S5(0,0) = 5 det Hess(f)(0,0) finishing the proof.

10



(d) (4 pts) Define the (thick) Gauss map G : P x (—1,1) — R? sending
a point in the thickened chart to the normal vector to the image of

¢ by
019(p) x 026(p)
|016(p) x 020(p)|

Traditionally curvature is approached by studying how fast the nor-
mal vector turns. This is captured by the Gauss curvature at p is
det G'(p,0). Under the same assumptions as in part ¢) prove that
to the scalar curvature at (0,0) equals twice the Gauss curvature at
(0,0).

G(p.t) = (t+1)

By the previous part it suffices to show that the Gauss curvature at
p = (0,0) which is G'(0,0, 0) satisfies

det G'(0,0,0) = det Hess(f)(0,0)

First we compute that with d = 1 + (91 f)? + (02f)% and p = (u,v)

we have f41
G(U, v, t) = T(_alf, _82fa 1)

To evaluate the matrix of partial derivatives at (0,0, 0) we notice we
should always be differentiating the 0;f part because otherwise it
will vanish, also %(0,0,0) = 1. Therefore the Jacobian matrix for
G’(0,0,0) is
=001 f =001 f 0
—0102f —020of O
0 0 1

Expanding the final column it is clear that
det G'(0,0,0) = det Hess(f)(0,0)

as required.
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